Predictive cruise control for heavy trucks based on slope information under cloud control system

نویسندگان

چکیده

With the advantage of fast calculation and map resources on cloud control system (CCS), cloud-based predictive cruise (CPCC) for heavy trucks has great potential to improve energy efficiency, which is significant achieve goal national carbon neutrality. However, most investigations focus on-board (PCC) system, lack research CPCC architecture under CCS. Besides, current PCC algorithms have problems a single target high computational complexity, hinders improvement effect. In this paper, layered based CCS proposed effectively address real-time computing deployment its algorithm vehicle-cloud. addition, dynamic programming principle road point segmentation method (RPSM), designed optimize speed gear with slope information. Simulation results show that can adaptively vehicle driving through prediction, fuel-saving rate 6.17% in comparison constant control. Also, compared other similar algorithms, make engine operate more efficient zone by cooperatively optimizing speed. Moreover, RPSM reconfigure advance, 91% roadpoint reduction rate, significantly reducing complexity. Therefore, study essential significance economic promotion system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit use of road topography for model predictive cruise control in heavy trucks

New and exciting possibilities in vehicle control are revealed by the consideration of topography through the combination GPS and three dimensional road maps. This thesis explores how information about future road slopes can be utilized in a heavy truck with the aim at reducing the fuel consumption over a route without increasing the total travel time. A model predictive control (MPC) scheme is...

متن کامل

Robust predictive cruise control for commercial vehicles

In this paper we explore learning based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control is able to look ahead at future road conditions and solve for a cost effective course of action. Model based controllers h...

متن کامل

Fuel Efficient Intelligent Control of Heavy Trucks

This work answers the need for improvement in fuel economy in heavy duty vehicles (HDV’s), in a manner simple enough to be used in open road missions. A lookahead anticipatory control (LA) method is designed to adjust longitudinal motion (signified by velocity of the vehicle system) using knowledge of fluctuations in road grade. The prediction of driving behaviour is done using a fuzzy logic fu...

متن کامل

فرآیند کنترل در سیستم کامپیوتری تهویه مطبوع ‏‎airwasher environmental control system for intelligent buildings‎‏

در این پایان نامه با استفاده از تکنولوژی روز و امکانات داخل کشور طریقه اتوماسیون سیستم تاسیساتی یک کارخانه نساجی (کارخانه نساجی اطلس پود) همراه با منوهای مربوطه و توضیحات کامل برنامه نویسی و طراحی بلوک های برنامه و سایر قسمتهای برنامه ارائه گشته است. علاوه بر این، برنامه با نمونه آمریکایی آن مقایسه و مزیت های آن نسبت به آمریکایی توضیح داده شده است. همچنین تمامی بلوک های برنامه بصورت شماتیکی بطو...

15 صفحه اول

Predictive Cruise Control in Hybrid Electric Vehicles

Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To support the driver in tracking of the energy optimal velocity trajectory, automatic cruise control is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Journal of Systems Engineering and Electronics

سال: 2022

ISSN: ['1004-4132']

DOI: https://doi.org/10.23919/jsee.2022.000081